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ABSTRACT: Protein folding is a fundamental process in
biology, key to understanding many human diseases.
Experimentally, proteins often appear to fold via simple two-
or three-state mechanisms involving mainly native-state
interactions, yet recent network models built from atomistic
simulations of small proteins suggest the existence of many
possible metastable states and folding pathways. We reconcile
these two pictures in a combined experimental and simulation
study of acyl-coenzyme A binding protein (ACBP), a two-state
folder (folding time ∼10 ms) exhibiting residual unfolded-state
structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenesis, we
first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range
structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing
experiments to study the folding kinetics of ACBP on the microsecond time scale. These studies, along with Trp-Cys quenching
measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (∼100 μs) time
scale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar
way. A Markov state model (MSM) of the ACBP folding reaction, constructed from over 30 ms of molecular dynamics trajectory
data, predicts a complex network of metastable stables, residual unfolded-state structure, and kinetics consistent with experiment
but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results
suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate but rather to a
more heterogeneous and slow acquisition of unfolded-state structure.

■ INTRODUCTION

Solving the mystery of how proteins fold requires a
combination of advances which collectively have remained
elusive: (1) experiments with sufficient spatial and temporal
resolution to yield a detailed characterization of folding kinetics,
(2) simulation methodology that can make successful
quantitative predictions of multiple experiments at atomic
resolution, and (3) application of these methodologies to large,
slow-folding proteins with biological relevance, instead of

designed miniproteins. Toward this end, we have conducted an
extensive study of bovine acyl-CoA binding protein (ACBP)
using a combination of experimental and computational
methods.
ACBP is an 86-residue four-helix bundle protein reported to

fold on the ∼10 ms time scale, typical of the single-domain
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proteins often used as model systems for folding. ACBP has
been described as a two-state folder, with a transition state
consisting of an ensemble of structures with helices 1 and 4
packed against one another,1 although higher resolution
experiments have suggested slightly more complex models,
with each new experimental probe revealing previously
undetectable intermediates.2 NMR and FRET studies have
shown that the unfolded state is not a random coil but compact
with significant residual structure under denaturing condi-
tions.3−5 Continuous-flow capillary mixing, and more recent
laminar-flow mixing experiments,6 revealed an ∼80 μs kinetic
phase, suggesting a three-state phenomenological model U→
I→N where I is a partially structured intermediate.7

We were particularly interested to probe the molecular
events underlying this fast kinetic phase of ACBP folding, as
this time scale is now jointly accessible by simulation and
experiment. Here, we use single-molecule FRET (smFRET)
studies and mutational analysis to provide a detailed character-
ization of residual structure in the denatured state of ACBP. We
then use ultrafast laminar-flow mixing experiments to study the
folding kinetics of ACBP on the microsecond time scale. These
studies, along with with Trp-Cys quenching measurements of
unfolded-state dynamics, suggest that unfolded-state structure
forms on a surprisingly slow (∼100 μs) time scale, and that
sequence mutations strikingly perturb both time-resolved and
equilibrium FRET measurements in a similar way.
To gain further insight into the folding mechanism, we

independently perform a large-scale molecular simulation study
of ACBP folding. Previously, systems such as ACBP have been
too large and slow for simulation studies, which have been
limited to nanosecond to microsecond time scales for proteins
with less than 40 residues. Today, recent advances in simulation
methodology8−10 and network models called Markov state
models (MSMs), in which conformational dynamics is modeled
as transitions between kinetically metastable states, make it
possible to model folding on the millisecond time scale.11,12

Here, we use over 30 ms of trajectory data to construct a MSM
of ACBP folding, which predicts residual unfolded-state
structure and kinetics consistent with experiment but no well-
defined intermediate.
Taken together, these experimental and simulation results

suggest that the fast kinetic phase is not due to formation of a
well-defined intermediate but rather a much more heteroge-
neous acquisition of unfolded-state structure. Moreover, our
analysis provides a way to reconcile the large numbers of
metastable states predicted by MSMs with simpler models
derived from fits to experimental kinetic data. The MSM model
of ACBP folding predicts that, despite the complexity of the
underlying dynamics, spectroscopic probes of end-to-end
distance most sensitively report on two main dynamical time
scales, implying a phenomenological three-state mechanism.

■ EXPERIMENTAL METHODS
Protein Expression, Purification, and Labeling. A plasmid

encoding for wild type acyl-CoA binding protein (ACBP) was
provided by Dr. Kaare Teilum (University of Copenhagen, Den-
mark).13 Site-directed mutagenesis was accomplished with the
Quickchange mutagenesis kit (Stratagene, Carlsbad). Expression,
purification, and fluorophore-labeling of ACBP was performed as
described in detail elsewhere.5 For protein L (ProL) details, see
Supporting Information section A.1.
Single-Molecule Measurements. Single-molecule measurements

were performed with a water-immersion objective mounted on an
inverted fluorescence microscope (Olympus IX17, 60× 1.2 NA water-

immersion objective, 100 μm pinhole), equipped with an acousto-
optical modular (N48058-XX-55, Neos Technologies, Melbourne, FL)
to allow alternating-laser-excitation (ALEX) using a two-laser
excitation source (488 nm Ar+-laser for the D-fluorophore, 634 nm
diode-laser for the A-fluorophore).14,15 A laser alternation period of
100 μs was employed, allowing simultaneous and direct probing of
both single donor (D)- and single acceptor (A)-fluorophores in a
single, diffusing molecule. Emitted photons were separated into donor
and acceptor channels and imaged onto a single-photon-counting
avalanche photodiode. All measurements were carried out in 20 mM
sodium phosphate, pH 7.0 (ProL and ACBP), or 20 mM sodium
acetate, pH 4.20 (ACBP), containing various concentrations of GuHCl
(0−6 M) as chemical denaturant. See Supporting Information section
A.2 for more details.

Real FRET efficiencies (EFRET) were calculated from the
experimentally measured proximity ratio (PR) according to EFRET =
PR/[PR + γ(1 − PR)]. The correction factor γ is the product of an
instrument-specific constant ηA/ηD (ratio of A- and D-detection
efficiencies), and a dye-specific term QA/QD (ratio of A- and D-
quantum yields). The quantum yields of the D- and A-fluorophores
were measured with singly labeled proteins, relative to the quantum
yields of the free maleimide dyes (QD = 0.92, QA = 0.32). For ACBP,
we estimated QD = 0.66 ± 0.06 (measured at 6 M GuHCl, with C-
terminally labeled ACBP). For ProL, we found QD = 0.68 ± 0.04 for
ProL (measured at 6 M with a protein sample labeled at Cys16).
These values are consistent with previously reported quantum yields of
Alexa488 measured under similar conditions using unrelated proteins
(0.63 < QD < 0.78).16−18 See Supporting Information for details on
determining γ.

The Förster radius (R0) was calculated as R0 = 0.211 ×
[k2n−4QDJ(λ)]

1/6 (in units of Å), where J(λ) is the spectral overlap
integral of the D-emission and the A-absorbance spectra, QD is the
quantum yield of the protein conjugated D-fluorophore, n is the
refractive index of the solution, and k2 = 2/3 is the orientational factor.
A Gaussian-chain model was used to calculate radius of gyration Rg
from EPR. See Supporting Information for full details.

The time-resolved FRET and Trp-Cys quenching measurements are
described in detail in Supporting Information sections A.4 and A.5.

Abbreviations. ACPB, acyl-coenzyme A-binding protein; FRET,
Förster resonance energy transfer; smFRET, single-molecule FRET;
GuHCl, guanidinium hydrochloride; PR, proximity ratio; MSM,
Markov state model; GPU, graphics processing unit; GBSA,
generalized Born-surface area; MBAR, multistate Bennett acceptance
ratio; NTL9, N-terminal domain of ribosomal protein L9; rmsd, root-
mean-squared deviation; PRE, paramagnetic relaxation enhancement.

■ SIMULATION METHODS

Molecular Dynamics Simulation. Distributed molecular
dynamics simulations were performed using an accelerated
version of GROMACS19 written specifically for GPUs20 using
the Folding@Home platform.21 The AMBER ff9622 forcefield
(AMBER ff0323 was also tested) with a popular GBSA implicit
solvent model24 was used for production runs. Up to 10 000
parallel simulations were simulated at 300 K, 330 K, 370 K, and
450 K, started from roughly equal numbers of native, extended,
and random-coil starting states (the five different initial coil
states used as initial structures were generated from a Monte
Carlo procedure rewarding compactness). Starting conforma-
tions for the native state of ACBP were taken from the
minimized crystal structure (PDB code 1hb6). The aggregate
simulation time was 31.7 ms (31.0 ms for the AMBER ff03
simulations). Stochastic integration (Langevin dynamics) was
performed using a time step of 2 fs, Berendsen temperature
coupling, full nonbonded interactions (no cutoff), a viscosity of
91 ps−1, and hydrogen bond lengths constrained using SHAKE;
trajectory snapshots were recorded every 1 ns.
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Calibration of Simulated Temperature and Exper-
imental Denaturant Concentration. Unfolded-state simu-
lations at increasing temperatures exhibit a globule-to-coil
transition (see Figure 6a), allowing us to calibrate each
simulation temperature to an effective experimental [GuHCl]
using a polymer-theory approach, as described previously.25,26

This method, similar in spirit to several recent molecular
transfer models of denaturant-dependent unfolded-state chain
expansion,26−29circumvents the inaccuracies of current force-
field models for GuHCl and instead uses a tangible order
parameter (the extent of expansion in the denatured-state
ensemble) to compare simulated and experimental ensembles.
The calibration results were corroborated by direct compar-
isons of simulated average end-to-end distances against those
calculated from experimental FRET efficiencies, as well as
comparsions of the Flory χ parameter (the monomeric transfer
free energy from protein to solvent) obtained from fitting
experimental and simulated ensembles to the polymer theory
model (see Supporting Information for details). Simulations at
330 K, 370 K, and 450 K were calibrated to 0 M, 0.6−1.0 M,
and >6 M GuHCl, respectively.
Long-Range Contact Propensities in Unfolded-State

Ensembles. Interresidue contact propensities were calculated
using 2000 conformations chosen at random from simulated
unfolded-state ensembles after 5 μs. Two residues were defined
to be in contact if their Cα atoms were closer than 8.5 Å.
Propensities were calculated as a contact free energy −kT log
(pij/pij

ref) for residues i and j, where T = 300 K, pij is the
probability of contact for residues i and j, and pij

ref is a reference
state for contact probabilities averaged over all contacts at
sequence separation s = |i − j|, i.e., pij

ref = ⟨pkl⟩ where |k − l| = s.
Pseudocounts of 1/2000 were added to each pij to correct for
finite sampling error.
Modeling Sequence-Dependent Unfolded-State Ex-

pansion. Changes in simulated unfolded-state ensembles upon
mutation were computed with a free energy perturbation
approach, using a coarse-grained potential with two terms: (1)
a statistical potential derived from sequence-dependent back-
bone dihedral propensities,30 and (2) interresidue contact
energies computed from the Miyazawa−Jernigan31 matrix.
Because this potential is sufficiently smooth, accurate
reweighting was possible using 20 000 snapshots (taken after
5 μs from ensembles simulated at 370 K). The relative free
energy between wild type and mutants were calculated using
the MBAR algorithm, with expectation values of intramolecular
distances calculated as described in ref 32. Full details are in
Supporting Information section B.6.
Markov State Model (MSM) Construction and Vali-

dation. The MSMBuilder33 software was used to build MSMs
for ACBP under folding conditions (0 M GuHCl, 330K
simulations) and unfolding conditions (0.6−1.0 1 M GuHCl,
370 K simulations). We found that a 20 000-microstate
decomposition yielded a good balance of state connectivity
and adequate transition sampling. Conformations were
clustered using a subset of 258 atoms (backbone N, Cα, and
C); 20% of the data was used to generate an initial clustering,
and the remaining 80% of the data was assigned to the
generators. The 20 000-microstate model was used for
predicting experimental observables, while a 2000-macrostate
MSM obtained by kinetic-based lumping34 was used to analyze
the distribution of folding pathway fluxes from unfolded to
folded states.

Transition probabilities Tij of transitioning from state i to
state j (within a lag time τ) are estimated by counting the
number of transitions nij observed between time t and t + τ, and
normalizing by rows: Tij = nij/(∑j nij). To enforce detailed
balance, we symmetrize the forward and backward counts as (nij
+ nji)/(∑j nij + nji). Artifacts from symmetrization are mostly
limited to transitions with very few counts (and hence low
populations that have negligible effects). Sliding-window counts
were used to alleviate finite-sampling errors. To validate the
robustness of these assumptions in estimating transition rates,
we performed importance sampling of the posterior distribu-
tion of 2000-macrostate transition matrices, using a reversible
conjugate prior for Markov chains as described in ref 35. We
generated ∼5000 Markov chain realizations (samples of
transition counts n ̃ij, with no sliding window used; calculations
are limited by storage space), from which expectation values
(mean and variance) of equilibrium populations pi ∝ (∑j ñij)
were calculated. The expectation equilibrium populations
calculated using the reversible prior were very similar to the
symmetrization results (Supplementary Figure S7e,f). For
example, the native macrostate population (pnat) using this
procedure was 28.13% ± 0.069%, whereas the transition matrix
constructed directly from from sliding-window counts yielded
pnat = 30.3%, a discrepancy of only ∼0.07 kT.
A lag time of τ = 20 ns was determined to be suitable by

building a series of MSMs at different lag times to find a region
where the spectrum of implied time scales36,37 τi = −τ/ln(λi)
are relatively insensitive to lag time. To check the accuracy of
the MSM, we compared average inter-residue distances over
time (17−86, 1−86, and 17−50) seen in the trajectory data, to
predictions from the MSM, and found reasonable agreement
(see Supporting Information section B.1). While the implied
time scales become accelerated after lumping (it is difficult to
achieve a perfect separation of time scales), distributions of
folding pathway fluxes remain mostly intact for analysis. A
Bayesian inference model described in38 was used to estimate
Arrhenius barriers ΔG⧧

ij separating microstates and macro-
states.
Committor (pfold) values and mean first passage times were

computed for each macrostate using methods described in refs
37 and 39. The pfold values we compute for MSM macrostates
are defined as the probability of reaching the native macrostate
before the unfolded extended-chain macrostate. Transition path
theory (TPT)40−42 was used to calculate pathways of reactive
folding flux, using a modified “greedy backtracking” algorithm
(see Supporting Information section B.2). MSM equilibrium
population vectors were calculated from the largest eigenvector
of the transition matrix, i.e., from peq = peqT. Macrostate free
energies Fi were calculated from MSM equilibrium populations
pi as Fi = −kT log pi at room temperature. The free energy of
folding as a function of the kinetic reaction coordinate pfold was
calculated as F(pfold) = −kT log Z(pfold) where Z(pfold) =∑i χipi
and where χi is a bin indicator variable for bins with left edges
pfold = 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95.

Master Equation Formalism. The continuous-time master
equation describing the microstate dynamics is dp/dt = pK,
where p is the vector of state populations, and K is a 20 000 ×
20 000 matrix of rate coefficients, related to the discrete-time
transition probability matrix by T = exp(τK).36,43 The solution
of the master equation is

ψ ψ λ= ∑ · = = ∑t t t tp p p( ) [ ( 0)]exp( ) ( )n n n n n n
L R
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where ψL
n, ψ

R
n, λn are the left and right eigenvectors and

eigenvalues of K, respectively. The kinetics can thus be
described as a superposition of exponential relaxation modes
pn(t) at implied time scales τ*n = −λn−1, each with amplitude an
= [ψR

n·p(t = 0)].
MSM Predictions of Observables. Predicted values of

observables over time were computed as F(t) = p(t)·f, where
p(t) is a vector of state populations over time, and f is a vector
of observables values for each microstate. Uncertainty estimates
were propagated assuming statistical independence of each
state. For some observables, time courses were obtained by
discrete propagation of the transition probability matrix T,
using p(t + τ) = p(t)T. For others, p(t) was calculated from the
1000 slowest relaxation modes of the master equation solution.
Rmsd pseudotrajectories were calculated using a simple Monte
Carlo algorithm to generate a trajectory of (20 ns) microstate
jumps, and selecting at random (uniformly) a simulation
snapshot to report observables at each time step (see
Supporting Information section B.3 for more examples).
Predictions of FRET observables over time were computed
with special corrections for FRET probe linkers not present in
the simulations (see Supporting Information section B.4), and
corrections for native state stability (see below). Trp-Cys
quenching rates and intramolecular diffusion coefficients for
T17C−W58 and W58−I86C were predicted using methods
described in ref 25 from simulated distributions of intra-

molecular Trp-Cys distances P(r) calculated from simulated
unfolded ensembles (330 K, 0 M GuHCl, and 370 K, 0.6−1.0
M GuHCl, starting from extended and coil states, snapshots
taken after 1 μs), where r is the distance between side-chain
centroids (see also Supporting Information section A.5).
Intramolecular diffusion coefficients D were computed from
trajectory data, by fitting the mean-squared displacements of
Trp-Cys distances over time in blocks of 50 ns (sampled in 1-ns
intervals), as described previously.25

Correcting Predicted FRET Values for Native-State
Stability. A consequence of symmetrization of the transition
probability matrix is that the equilibrium populations are
proportional to the total number of observed counts:44 pi ∝
(∑jnij). Because of this, our MSM predicts an equilibrium
distribution of states with ∼2:1 unfolded vs folded populations,
even under folding conditions. To correct predicted observ-
ables, we compute FRET values by subtracting the equilibrium
unfolded-state component of the signal (i.e., we assume that the
simulated unfolded state is “invisible”). The stationary state peq
= (ncoil + next + nnat)/(Ncoil + Next + Nnat) is the (normalized)
number of counts observed in the trajectories, where ncoil, next,
and nnat are the vectors of observed microstate counts for
simulations initiated from coil, extended, and native states,
respectively, and N = Ncoil + Next + Nnat is the total number of
counts observed in all simulations. We propagate the discrete-
time transition matrix as described above to get populations

Figure 1. Unfolded-state structure studied by smFRET experiments at equilibrium. (a) Single-molecule FRET histograms measured with site-
specifically labeled ProL (gray, reference) and four ACBP variants (blue, red, orange, green) at various denaturant concentrations. (b) Unfolded-state
FRET efficiencies versus denaturant concentration for each variant, shown with the ProL reference (c) FRET-based random coil Rg estimates for
ACBP revealing nonuniform compaction, and compaction to a greater extent than the ProL random-coil reference. Rg values were normalized to the
Rg estimate of ACBP 17−88 by multiplying by the Flory scaling factor (see Supporting Information section A.4). (d) Mutant Y31N produces a
significant expansion of the unfolded state, indicating a disruption of long-range structure. (Data for other mutants shown in Supporting Information
Figure S1).
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over time, and calculate FRET using a modified projection
operator S′:

′ = − +S N N S S Np p n n( ) ( / )[ ( ) ([ ]/ )]nat ext coil

This projection operator has the property that as t→∞,
S′(p(t→∞)) = S(nnat/Nnat). We use this correction for the
FRET predictions in Figure 2d, setting the starting config-
uration p(t = 0) to a single microstate corresponding to the
extended state. A caveat of this approach is that negative FRET
values may be obtained at very early times, when initial
popultions are from unfolded states. For all cases we
considered, we find that this effect only occurs for t < 1 μs,
faster than the time resolution of the mixer experiments to
which we make comparisons.

■ RESULTS
Experimental Evidence for a Highly Structured

Denatured State. To study the denatured-state structure of
ACBP under a wide range of experimental conditions, smFRET
studies45,46 were performed. Pairs of Cys residues were
engineered into the ACBP sequence (wild type ACBP is Cys-
free) that were subsequently labeled with a FRET dye pair
(Alexa488/Alexa647). The FRET pairs were positioned such
that they report on distance changes within discrete
substructures of the four-helix bundle topology (Figure 1a,
top). For example, labeling at position 1−68 reports on
distance changes within the first three N-terminal helices, while
labeling at positions 17−88 reports on changes in the three C-
terminal helices. Likewise, ACBP 1−40 reports predominantly
on the integrity and interaction of helix 1 (previously reported
to be flexible and engaging in little long-range residual
structure4), while ACBP 1−88 probes end-to-end distance
changes (Supporting Information section A.3 for additional
information). These FRET-pair variants contained an addi-
tional destabilizing W55F mutation to populate the denatured
subensemble at very low denaturant concentrations. Compar-
ison with wild type ACBP suggests that the W55F mutation
does not significantly perturb residual structure in denatured
state, at least under conditions where both mutant and wild
type populate the denatured state to measurable quantities
(0.8−6 M GuHCl) (Supporting Information Figure S1a).
FRET-efficiency histograms of the four FRET-pair mutants

of ACBP exhibit folded (high-FRET) and unfolded (low-
FRET) subpopulations that coexist at intermediate denaturant
concentration, as expected for a thermodynamic two-state
folder with a free energy barrier separating folded and unfolded
subpopulations (Figure 1a, bottom). Mean FRET efficiencies of
the folded and denatured subpopulations were extracted from
Gaussian fitting of the histograms. The mean FRET efficiencies
of the denatured subpopulation of each FRET-pair mutant at a
particular denaturant concentration are plotted in Figure 1b,
together with the mean-FRET efficiency of a highly destabilized
and constitutively unfolded triple-Ala variant of ProL (see
Supporting Information section A.1 for details), that serves here
as a pseudorandom coil reference. Clearly, all four interresidue
distances of ACBP probed by smFRET experience significantly
larger contractions than the single distance probed in the ProL
reference, particularly below 3 M GuHCl, suggesting a compact
ensemble of structures under conditions that favor folding.
To compare the mutant effects more quantitatively and to

better connect the experimental results with simulation
predictions, we next converted the FRET efficiencies into
radii of gyration (Rg), which were then normalized to identical

chain length (88 residues) by multiplication with the Flory
scaling factor (Figure 1c, Supporting Information section A.2
for additional information). Under strongly denaturing
conditions (>3 M GuHCl), all five proteins show (within
error) identical polymer behavior, suggesting that under those
conditions, chain contraction is sequence-independent and
probably unspecific (see Supporting Information section A.3).
Below 3 M GuHCl, however, we not only observe a significant
shortening of each of the four ACBP distances beyond that
measured in the ProL reference (suggesting acquisition of
compact residual structure beyond that seen in the ProL
random coil), but also significant differences among the ACBP
distances themselves, demonstrating nonuniform compaction.
The 1−40 distance exhibits the weakest contraction, which is
consistent with previous reports4,47 that helix 1 is more flexible
and engages in less residual structure than the remaining three
helices. The largest distance change is experienced by 17−88,
with 1−68 exhibiting a behavior in between 1 and 40 and 17−
88. The latter observation is noteworthy, as the interdye
distance in 17−88 (72 residues) and 1−68 (68 residues) is
almost identical, the only difference being that 17−88 includes
the structured C-terminal helix (45% folded in isolation), while
1−68 includes the weakly structured and more flexible N-
terminal helix.
To provide further evidence for residual structure in

denatured ACBP, additional mutants were made in the 17−
88 FRET-pair context by replacing large, hydrophobic residues
that engage in long-range residual structure in folded ACBP
(F5A in helix 1, F26A, I27A, Y28A, Y31N in helix 2, and W55L
in helix 3; Supporting Information section A.3 for additional
information). Indeed, for the nonconservative Y31N mutant,
we observe a significant perturbation of residual structure
(Figure 1d), a result that is also predicted by reweighting of the
simulated unfolding ensembles (Figure 6c, Supporting
Information Figure S2). Interestingly, even though the F5A
mutation perturbs the same long-range interactions as the
Y31N in the folded protein, it does not affect denatured-state
structure measureably. Perturbation of nativelike structure in
the denatured ensemble is thus likely not to be the cause of the
disruptive effect of the Y31N mutant.
We do not see significant denatured-state expansion in the

F26A, I27A, and Y28A mutants (Figure S1), which is perhaps
surprising, given that the mutated residues F26, I27, Y28, and
Y31 are all positioned in helix 2 and are separated by less than
two helix turns in the folded protein. This could simply be
because Y31N is more disruptive than the other, more
conservative, alanine mutations. Another, more provocative,
explanation is that these differential disruptive effects are
reporting the presence of specific long-range helix−helix
contacts in denatured ACBP. Such an interaction was first
postulated by Poulsen and co-workers for helix 2 and helix 4
from spin-sensitized NMR experiments, a hypothesis that is
supported by more recent molecular dynamics simulations that
reveal similar contacts persisting in acid-denatured ACBP (pH
2.3), i.e., conditions where ACBP is >99% unfolded. Such long-
range interaction might be favored by the amphipathic nature
of the two helices and the high helical propensity of helix 4
(60% folded in isolation) that may act as a hydrophobic
docking site for helix 2. Indeed a helical wheel plot suggests that
residue Y31 would be positioned right in the center of the
putative hydrophobic helix interface, while residues F26, I27,
and Y28 would adopt more peripheral positions (Supporting
Information Figure S1b). It is therefore plausible that a Y31N
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mutation would exert a more perturbing effect. As the rate-
limiting step for folding is the formation of side-chain contacts
between helices 1, 2, and 4, long-range contacts between helices
2 and 4 in the denatured state might be advantageous for
barrier-limited folding.1 A much more extensive mutational
analysis, however, is required to fully support this model.
Surprisingly Slow Formation of Unfolded Structure.

We hypothesized that the ∼80 μs kinetic phase seen
previously7 might reflect a gradual (microsecond time scale)
collapse to a heterogeneous ensemble of unfolded, yet highly
compact structures, rather than the formation of a classical
folding intermediate. Strong support for this hypothesis comes
from nonequilibrium FRET experiments measured with the
F26A, Y31N, and W55F mutants of ACBP 17−88 in an
ultrafast laminar-flow mixing device.
The FRET trajectories of the three mutants, measured upon

refolding of denatured protein (6 M GuHCl) into refolding
buffer (0 M GuHCl), are biphasic, with a submicrosecond burst
phase occurring within the mixing time of the mixer (<4 μs),
followed by a fast, kinetically resolvable relaxation process
occurring on the ∼100 μs time scale (Figure 2a). The W55F
trajectory (Figure 2b, red) is best fit by either a single
exponential (relaxation time scale = 48 ± 4 μs) or a stretched-

exponential (relaxation time scale = 46 ± 3 μs; β = 0.80; see
Supporting Information section A.4 for further details on curve
fitting). Additional measurements for the W55F variant at both
high and low flow rates were made in separate mixing
experiments to extend the time range of FRET trajectories to
∼800 μs (Figure 2c). The results (after normalization to
account for minor differences in detection efficiencies) agree
well with the shorter trajectories after 20 μs (see Supporting
Information section A.4). The full time course of FRET vs time
predicted by the MSM (which does not predict a stable folding
intermediate, Figure 5) seems to qualitatively reproduce the
∼800 μs FRET trajectory (Figure 2d). We note that the
simulated dynamics predicted by the MSM are slightly faster
(∼1−10 μs). This agreement with experiment is reasonable
considering potential systematic error from forcefield and rate
estimation effects (see below).
The slow, barrier-limited folding transition occurring on the

∼10 ms time scale, and, accounting for the remaining 5−10% of
the expected FRET amplitude change upon folding, cannot be
resolved at the high flow rates employed in this study.
However, previous laminar-flow mixing studies at substantially
slower flow rates and different mixer design revealed an
additional slower phase with a rate constant (∼9 ms) almost
identical to the rate constant reported from Trp-fluorescence
detection,7 thus ruling out a major perturbation of the energy
landscape by the bulky fluorophores.
Increasing the denaturant concentration in the refolding

buffer results in a nonlinear decrease of the amplitude of the
kinetically resolvable relaxation process (Figure 2b). The
relaxation rates of the three mutants, obtained from single
exponential fits and rate spectra analysis (see below) of the
FRET trajectories, agree within a factor of 2.5 and are only
weakly affected by denaturant, as found previously.7 Interest-
ingly, mutants Y31N and F26A result in dead-time collapse
amplitudes lower than that for the W55F mutant, indicating
that there is already long-range residual structure developing
within the first few microseconds of refolding. This hypothesis
is supported by earlier experiments and simulations that show
that contacts between helices 2 and 3 persist at moderately high
denaturant concentrations (3 M GuHCl),4 and our own
simulation predictions (see below) that similar interhelical
contacts persist at moderately denaturing temperature (370 K,
corresponding to 0.6−1.0 M GuHCl) (Supporting Information
Figure S3). It is therefore plausible that helix 2−helix 3 contacts
form early in the folding process while helix 2−helix 4 contacts
(which form at lower denaturant concentrations4) form later.
Similar fits for for F26A and Y31N yield ∼90 μs and ∼120 μs,
respectively.
To our surprise, we also found that extrapolations of the

(normalized) asymptotic FRET efficiencies estimated from
nonequilibrium mixing agreed within experimental error with
the FRET efficiencies of the denatured subpopulation of ACBP
inferred from smFRET experiments at equilibrium (Figure 3).
Such good agreement between normalized transient and
equilibrium FRET efficiencies is difficult to rationalize in the
framework of a transiently populated folding intermediate (see
Discussion).

Trp-Cys Quenching Studies Suggest Slow Intra-
molecular Diffusion in the Denatured State. To further
probe unfolded-state structure and dynamics, Trp-Cys contact
quenching studies were performed. These studies measure the
time-resolved decay of the excited triplet state of tryptophan,
and its quenching by cysteine in the unfolded state, to give

Figure 2. Folding kinetics of hydrophobic core mutants of ACBP 17−
88 measured in an ultrafast microfluidic mixer. (a) Mutations F26A
and Y31N (shown to disrupt unfolded-state structure in smFRET
experiment) decrease the relaxation amplitudes of the fast kinetic
phase but do not significantly affect relaxation rates (see Supporting
Information Figure S11 and Supporting Information section B.4 for
fitting details). Burst-phase amplitudes occurring within the mixing
time (<4 μs) are evidence of residual structure already formed at early
times. (b) Disruption of residual structure induced by chemical
denaturant, exemplified by the F26A variant. (c) Average FRET
trajectories of the W55F variant measured in separate mixing
experiments out to ∼800 μs. Five independent measurements,
normalized to initial and final asymptotic values, were averaged, with
the error bars representing the standard deviations of this average. (d)
MSM predictions of FRET time courses (see below and Simulation
Methods) show kinetic time scales in qualitative agreement with
experiment. Confidence intervals (thin lines) reflect uncertainty in R0
and probe distances (see Supporting Information).
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insight into intramolecular dynamics in the unfolded state.48

Studies were performed for two single-cysteine mutants of the
same W55F variant of ACBP which were also used for the
smFRET and fast mixing experiments. The first mutant
contains a single Cys at position 17 and probes intramolecular
diffusion within the T17C−W58 loop that comprises helices 2
and 3 and the long connecting loop that connects the two
helices. The second mutant contains a Cys at the C-terminus
and reports on chain dynamics in the W58−I86C loop, i.e., on
dynamics within the two C-terminal helices. Measurements
were performed at equilibrium from 1 to 6 M GuHCl, as well as
in a fast mixer49 which diluted denaturant from 5 to 0.2 M and
0.8 M GuHCl (0.8 M GuHCl only for T17C−W58) in order to
observe intramolecular diffusion before barrier-limited folding.
A previous study has shown good agreement between
equilibrium and mixer measurements at the same denaturant
concentration.49 The observed quenching rates kobs are
modeled as resulting from a combination of a reaction-limited
rate, kR, and diffusion-limited rate, kD+, which can be extracted
by varying viscosity and temperature independently. An
effective diffusion coefficient can be determined from the
measured rates and simulated Trp-Cys distance distributions,
using methods described previously25 (see Supporting
Information section A.5). Within the mixer, the observed
quenching rate slows down within the mixing time (Figure 4a).
The slope of a linear fit of 1/kobs vs viscosity for W58−I86C
gives kD+ = 1.18 ± 0.41 × 105 s−1 at η = 1 cP (Figure 4b).
Qualitatively, the intramolecular dynamics of ACBP exhibits

a pattern similar to that of previously studied proteins (protein
L, protein G): Decreasing the denaturant concentration induces

a chain compaction, which increases kR and decreases kD+,
suggesting less diffusivity (Figures 4c,d). For both loops, kR and
kD+ cross at ∼1.5 M GuHCl, near the denaturation midpoint,
behavior seen previously for protein L, although the midpoint is
much lower for ACBP. For the T17C−W58 loop, kD+ becomes
too slow to accurately measure (<4 × 104 s−1), suggesting this
loop is less diffusive than the W58−I86C loop, consistent with
the pattern of long-range contacts seen in simulation.
Intramolecular diffusion coefficients at low denaturant

concentrations, estimated using experimental rates and a
simulated Trp-Cys distribution, were estimated to be ∼6 ×
10−9 cm2/s, suggesting that the unfolded state in the absence of
denaturant is highly collapsed and slowly diffusing, though the
level of diffusivity may vary across the chain (Figure 4e).
Significantly, a independent estimate of the diffusion coefficient
entirely from simulation gives the same estimate (red point in
Figure 4e), showing agreement between simulation and
experiment. This result is ∼10 times higher than observed for
protein L,49 despite the fact that it is more compact (see also
Figure 1b). The diffusion coefficient decreases dramatically
below the denaturation midpoint. Along with the crossing of kR
and kD+, and the dramatic increase in FRET from single-
molecule studies at the denaturant midpoint, this behavior
shows the unfolded chain becomes compact and undergoes
slow dynamics as the probability of folding becomes significant.

Figure 3. Comparison of relative FRET efficiencies for the denatured
subpopulation measured by equilibrium smFRET (circles) and the
asymptotic FRET efficiency of the time-resolvable microsecond kinetic
phase measured by ultrafast laminar-flow mixing (triangles). A
comparison of relative FRET efficiencies was necessary to account
for minor differences in detection efficiencies between the microscopic
setups used for the smFRET and ensemble mixing experiments and
the presence of donor-only species in the ensemble mixing experiment
that were digitally removed in the smFRET experiments. For the
smFRET experiments, raw FRET efficiencies of the denatured
subpopulation at a particular denaturant concentration were
normalized to the difference in FRET efficiency between the folded
subpopulation at 0 M GuHCl and the FRET efficiency of the
denatured subpopulation at 6 M GuHCl. For the ensemble mixing
experiments, raw asymptotic FRET efficiencies for the microsecond
phase at a particular denaturant concentration were normalized to the
difference in FRET efficiency of the denatured protein at 6 M
(unfolded baseline in Figure 3a, main text) and the folded protein at 0
M (folded baseline in Figure 3a, main text). Note that some
asymptotic FRET values are not shown: W55F (6 to 3 M), Y31N (6 to
1.5 M), and Y31N (6 to 3 M); these traces were poorly fit by a single
exponential.

Figure 4. Trp-Cys quenching studies of ACBP report slow unfolded-
state intramolecular dynamics under folding conditions. (a) Observed
quenching rates vs time for loop W58−I86C in a fast mixer after
diluting from 5 to 0.2 M GuHCl, shown with an exponential fit to the
data. (b) Linear dependence of W58−I86C quenching times (T =
23C) with viscosity at ∼1.4 ms, shown with a least-squares linear fit, R2

= 0.729. (T17C−W58 times are not shown, as they are too slow to
accurately measure.) (c and d) Reaction-limited kR (filled) and
diffusion-limited kD+ (open) vs [GuHCl] for (c) W58−I86C and (d)
T17C−W58 loops. Red circles denote kR predictions from simulation
data, and the dotted line reflects a lower limit of D at 0.2 M (see
Supporting Information). (e) Intramolecular diffusion coefficients
extracted from the W58−I86C data using SSS theory (see Supporting
Information section B.4), and the red circle marks D calculated from
simulated mean-squared displacements vs time at 300K (0 M GuHCl).
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A Markov State Model of ACBP Folding Predicts a
Complex Network of Metastable States. Recently,
discrete-state master equation or Markov state models
(MSMs) have had success at modeling statistical dynamics at
long time scales.11,12,42,43,50 In these kinetic network models,
metastable states are identified such that conformational
transitions within each state are much faster than transitions
between states, so that the process can be considered to be
Markovian.51 The transition rates between states are estimated
from molecular dynamics (MD) simulations. If the model can
self-consistently reconstruct the statistical dynamics of the
trajectories it was constructed from, and if it obeys the Markov
property, it can be used to simulate the statistical evolution of a
noninteracting ensemble of molecules over time scales much
longer than the lengths of the individual trajectories from which
it is constructed (validation efforts described in Simulation
Methods). MSM dynamics can be directly compared with bulk
experimental data by computing observables from the predicted

state populations over time, as expectation values averaged over
each state (see Simulation Methods).
We built MSMs from over 30 ms of atomistic MD simulation

trajectories33 (distributions of trajectory lengths are shown in
Supporting Information Figure S4), for both folding conditions
(330 K, 0 M GuHCl) and unfolding conditions (370 K, 0.6−
1.0 M GuHCl). The native state is stable at 330 K, with a ∼3 Å
rmsd-Cα to the crystal structure (PDB code 1hb6) maintained
after 1 μs. Trajectories from the 330 K ensemble, initiated from
folded and unfolded conformations, were used to construct a
20 000-microstate MSM. The continuous-time master equation
solution of the microstate kinetics gives a spectrum of implied
time scales (see Simulation Methods), with the slowest implied
time scale corresponding to the overall folding time. The
folding time predicted from the MSM is ∼3 ms, comparable to
the ∼9 ms experimental folding time (Supporting Information
Figure S5).
Although no complete folding events were observed in any

one trajectory, the network of microstates is fully connected by

Figure 5. Markov state model (MSM)-based simulation of ACBP folding in all-atom detail on the tens of millisecond time scale. (a) Folding
pseudotrajectories generated from the MSM, projected onto a single degree of freedom such as the rmsd-Cα to the native crystal structure, suggests
cooperative folding to the native state via a simple two-state mechanism, near the millisecond time scale. The MSM, however, is a complex network
of metastable states, and the full picture of the folding dynamics is predicted to be more complex. (b) Shown are the 15 highest-flux folding pathways
bridging the extended and native states in a 2000-macrostate MSM, as calculated by transition path theory (TPT).41 Line thicknesses are
proportional to pathway folding flux (on a log-scale). Circled are the macrostates corresponding to the native and near-native state identified by
Teilum et al.2 (c) Free energy vs pfold (a kinetic reaction coordinate defined as the probability of reaching the native state versus the extended state),
plotted for each macrostate (black dots), shows a highly diffuse network of unfolded states, yet a simple basin structure in a 1D projection (red line).
Gray edges represent the network of fluxes shown in b. (d) Average inter-residue contact propensities calculated from unfolded-state simulations
corresponding to ∼1 M GuHCl (see Simulation Methods for details on the conversion of temperature into denaturant concentration), taken after 5
μs, show long-range contacts between helices 2 and 3, and helices 2 and 4. Contours show free energies of contacts (units kT) compared to a
reference normalized by loop length. Blue squares denote native contacts.
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the many unfolding and partial refolding events simulated
(Supporting Information Figure S6). The lowest free energy
microstate contains the native state and has a cluster center
with rmsd-Cα to the crystal structure of ∼0.6 Å (Supporting
Information Figure S7). The average rmsd-Cα between pairs of
conformations in each microstate (i.e., the microstate radius) is
6.89 ± 1.47 Å, slightly larger than previous MSM models of
folding (for example, a 100 000-microstate MSM built from
simulations of NTL9 (1−39)11 had an average microstate
radius of ∼4.5 Å), due to the larger size of ACBP (86 residues)
and the correspondingly larger accessible conformational
volume.
For comparison, we also built an MSM from the 370 K data.

The average microstate radius in this model was 8.40 ± 1.88 Å.
The lowest free energy microstate still contains the native state,
although the relative free energies of the other microstates are
lower (Supporting Information Figure S7). For the discussion
below, we will restrict our attention to the 330 K MSM
constructed for folding conditions.
Macroscopically, the MSM predicts cooperative transitions

between the folded and denatured subpopulations on the
millisecond time scale, consistent with experiment (Figure 5a).
Microscopically, however, the model is considerably more
complex. Consistent with recent simulation and experimental
studies showing kinetic heterogeneity,52 our MSM model
predicts a striking heterogeneity of metastable states and
folding pathways existing on the mesoscopic scale. MSMs of
protein folding for several proteins have previously been
reported to have a hublike network of states around the native
state.12,38,53 We report a similar hublike structure for ACBP,
consistent with these findings. Mean first passage times
(MFPTs) to the native microstate are 3 orders of magnitude
faster than MFPTs to non-native states (Supporting
Information Figure S8).
A 2000-macrostate MSM obtained from the 20 000-micro-

state MSM by kinetic-based lumping34 was used to analyze the
distribution of folding pathway fluxes from unfolded to folded
states. The highest-flux pathways connecting a fully extended
state to the native state show contact formation between helices
1 and 4 that are coupled to the folding transition, consistent
with phi-value analysis by Kragelund et al.1 (Figure 5b).
Furthermore, our model predicts a near-native state with a
displaced helix 3, corresponding well to a near-native
intermediate identified by Teilum et al.2

A surprising feature predicted by the MSM is the absence of
a single well-defined folding intermediate postulated in earlier
kinetic studies. The free energy of folding as a function of the
kinetic reaction coordinate pfold was calculated as F(pfold) = −kT
log Z(pfold) where Z(pfold) was estimated at 300 K as the sum of
equilibrium macrostate populations for binned values of pfold
(see Simulation Methods). The free energy diagram shows two
low free energy basins corresponding to the unfolded and
folded state but no other intermediates along the reaction
coordinate. Preceding the main folding barrier is a highly diffuse
network of compact metastable states with residual unfolded-
state structure (Figure 5c). These states contain both native
and non-native contacts, consistent with the predictions of past
simulations11 and a recent analytical model of hublike folding
networks.54

Unfolded-State Compaction in Simulated Ensembles.
Simulated unfolded-state ensembles were generated from
trajectories starting from fully extended and random-coil
conformations and used to compute several observables directly

comparable with experiment. The extended ensemble shows
significant chain compaction by ∼100 ns (see Supporting
Information section B.5), reaching a radius of gyration (Rg) by
∼5 μs similar to the coil ensemble, although slightly less
compact (Figure 6a), in agreement with previous unfolded-state

simulations.25 A polymer theory of the coil−globule transition
fits the simulated Rg values well for simulated ensembles at
different temperatures (Figure 6a, see Simulation Methods,
Supporting Information section C). While these fits show
unrealistically high melting temperatures (as found previ-
ously25), they are useful in obtaining transfer free energies per
monomer as a function of simulation temperature, which can
then be used to find experimental denaturant concentrations
where ACBP exhibits a similar extent of chain compaction (see
Simulation Methods). The comparison of simulated versus

Figure 6. (A) Radius of gyration (Rg) vs temperature for simulated
unfolded-state ensembles started from extended (blue) and coil (red)
conformations (after ∼5 μs), shown with the best-fit (i.e., maximum
likelihood) polymer theory model (crosses, see Supporting Informa-
tion for details). Note that the Rg values superimpose at 450 K. (B)
Estimated radius of gyration (average of extended and coil values)
from simulations (unfilled circles) at 0 M GuHCl (330 K) and ∼0.8 M
GuHCl (370 K) agree well with experimental Rg for ACBP 1−88
measured by smFRET (green circles) (see Supporting Information for
details of the calibration of simulated temperature with experimental
denaturant concentration). Horizontal error bars reflect uncertainty in
the calibration, while vertical error bars denote the variance of Rg
values across extended and coil ensembles. (C) Predicted (white)
versus experimental (green) changes in average end-to-end distances
due to perturbing mutations. Changes in the expectation value of
interresidue distance 17−86 for several ACBP mutants were calculated
from simulated unfolded-state ensembles (370 K, 0.6−1.0 M GuHCl)
using coarse-grained FEP calculations (see Simulation Methods,
Supporting Information section B.6). The experimental changes in
end-to-end distances ΔRee, were calculated from the smFRET Rg
values at 0.5 M GuHCl, using the random coil identity ⟨Rg

2⟩ = ⟨Ree
2⟩/

6. Error bars for ΔRee are calculated from uncertainties in Rg.
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experimental Rg obtained by smFRET at the calibrated
denaturant concentrations compares favorably (Figure 6b).
To model the sequence-dependent unfolded-state expansions

measured by smFRET, we used a free energy perturbation
approach to reweight conformations from simulated unfolded-
state ensembles. By using a sufficiently coarse-grained and
smooth potential to model sequence perturbations (see
Simulation Methods; Supporting Information section B.6),
accurate reweighting was possible using 20 000 snapshots from
simulated unfolded-state ensembles (taken after 5 μs). We
calculated expectation values of interresidue distance 17−86 for
the simulated wild type (86-residue) sequence, as well as
several mutant sequences characterized by smFRET. Our
results generally agree with changes in end-to-end distances
observed by smFRET: mutation Y31N is predicted to have the
largest disruption of unfolded-state structure, as seen
experimentally (Figure 6c). The relatively coarse resolution of
our perturbation method, along with effects not accounted for
in the model (such as the speculated amphipathic helix packing
between helices 2 and 4; see above), are likely the main source
of disagreement.
Unfolded-State Structure in Simulated Ensembles.

Interresidue contact propensities after 5 μs were calculated for
unfolded-state ensembles generated from extended starting
structures (see Simulation Methods). Similar patterns of
unfolded-state structure were found in the low-temperature
(330 K, 0 M GuHCl) and high-temperature (370 K, 0.6−1.0 M
GuHCl) simulated ensembles. Significant helical secondary
structure is predicted for residues in helix 1, 2, and 4 (as
calculated by DSSP,55 Supporting Information Figure S9), in a
pattern consistent with chemical shift measurements of the
acid-denatured state of ACBP at pH 2.356,57 (Supporting
Information Figure S10). Consistent with previous NMR
chemical shift3 and PRE4 studies, our simulations predict long-
range contacts in the unfolded-state ensemble between residues
in helix 2 and 3, and helix 2 and 4 (Figure 5d, Supporting
Information Figure S3). We find fewer contacts involving helix
1, supporting earlier reports that helix 1 is largely detached
from the rest of the ACBP structure,4 only forming
experimentally detectable long-range contacts late in folding
reaction.3,58 Average rmsd-to-native values for individual helices
over time (at 330 K starting from the extended state) show
helix 1 has a relaxation time scale of ∼350 ns, while helices 2, 3,
and 4 form compact, non-native structures by ∼100 ns, with
helix folding/unfolding presumably occurring on time scales
slower than ∼15 μs (data not shown).
Slightly more helicity (∼20%) and more specific long-range

contacts (mostly between residues in helix 2 and 3) are seen in
the higher temperature simulations (370K, ∼0.6−1.0 M
GuHCl). This is likely due to the GBSA solvent model used,
which does not model temperature-dependent effects, and to
the increased conformational sampling at higher temperature.
The exact prediction of helix content has little impact on our
polymer theory analysis, as scaling statistics are insensitive to
secondary structure content.59 We note, however, that
overestimates of helicity could bias the folding seen in the
MSM toward a “diffusion-collision” mechanism.
Complexity Underlies Simple Kinetics. The network of

transition rates in an MSM model specifies a continuous-time
chemical master equation whose solution yields a spectrum of
implied time scales, each corresponding to a relaxation mode
describing population flux on that time scale.36,37,43 This
spectrum is broad and continuous, reflecting the large number

of dynamic transitions between competing metastable states
occurring on many time scales (Supporting Information Figure
S5). This kinetic detail may be difficult to fully resolve
experimentally, as structural observables typically report
ensemble-averaged quantities, sensitive to specific kinds of
structural transitions (e.g., FRET is most sensitive to changes in
interatomic distances near the Förster radius.)
Which relaxation modes of ACBP are most sensitively

reported by FRET probes? To predict the relaxation time scales
observable by the ACBP 17−88 FRET probe, we projected the
MSM population dynamics onto a proxy observable, the
distance between residues 17 and 86, which can be more easily
computed from simulations (because our simulations do not
include C-terminal Gly-Cys residues 87 and 88). The predicted
(ensemble-average) time course of this proxy distance is a
superposition of relaxation modes of different amplitudes
(Figure 7a, see Simulation Methods). Interestingly, the model

Figure 7. The FRET distance observable is sensitive to two main
relaxation time scales. The continuous-time dynamics of the MSM
state populations was calculated via the chemical master equation (see
Simulation Methods). Observable values over time were computed as
the sum of projections to the 1000 slowest relaxation modes. (a) MSM
dynamics, starting from initial unfolded populations, projected onto
the distance between 17 and 86 (blue, thick), with traces of individual
modes shown below this. (Because our simulations do not include the
C-terminal Gly-Cys residues, 17−86 is used as a proxy for the FRET
distance observable 17−88.) (b) The amplitudes of each mode,
plotted versus each implied time scale, reveal that, despite a broad
distribution of kinetic time scales in the model, only two regimes
contribute appreciably to the observed signal: ∼0.1−3 ms (folding)
and ∼10 μs (unfolded-state structuring). Note that these time scales
are slightly faster than experiment due to forcefield and rate estimation
effects. (c) The calculated rate spectrum for the projection in part a
shows these two regimes clearly. (d) Rate spectra calculated from
experimental FRET mixer traces for W55F, F26A, and Y31N (data
from Figure 2a) show relaxations corresponding to unfolded-state
structuring on the ∼100 μs time scale (colored lines and shaded
rectangles are time scales, calculated from single-exponential fits to the
data, and their uncertainties). The ∼9 ms folding time scale (black
dashed line) is not accessible in the FRET mixer experiments, so peaks
corresponding to the global folding rate are absent.
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shows only two time scale regimes expected to exhibit a large
signal. (We also see a fast collapse phase in the simulations at
very early times (<50−100 ns), corresponding to the
submicroseond burst phase seen in mixing experiments,
omitted here for clarity. See Supporting Information section
B.5 for details.) A prudent experimentalist would fit such
observed traces to a biexponential curve, postulating a three-
state model, even though the underlying dynamics are
considerably more complex.
The relaxation modes with significant amplitudes cluster

around two important time scale regimes: ∼0.1−3.0 ms,
corresponding to the overall folding relaxation, and time scales
near ∼1−10 μs, corresponding to structuring in the unfolded
state (Figure 7b). We note that these predicted time scales are
faster than experiment by 1 order of magnitude, with a broad
spread in the slowest (folding) relaxation time scales, both of
which are likely due to forcefield and transition rate estimation
effects. The resolution of the MSM can be improved in the
future with additional sampling.
To better compare these predictions to experimental FRET

traces, we used a new method to calculate spectra of relaxation
time scales from time series data.60,61 These so-called rate
spectra are obtained by finding a spectrum of rate amplitudes ai
such that ∑i ai exp(−t/τi) best fits an observed time course for
a set of time scales τi. The spectra thus obtained are “dynamical
fingerprints”62 of the observed kinetics and can be thought of as
a numerical inverse Laplace transform, in which regularization
methods are used to avoid overfitting to noise.
The rate spectra of both simulation data (Figure 7c) and

mixer traces (Figure 7d) reveal similar kinetic phases. Rate
spectra calculated from experimental FRET mixer traces for
W55F, F26A, and Y31N (data from Figure 2a) show relaxations
corresponding to unfolded-state structuring on the ∼100 μs
time scale. While experimental limitations (e.g., signal-to-noise)
limit the resolution of the rate spectra, we see a strong
qualitative connection between the complex behavior seen in
simulation to experiment, as well as quantitative agreement of
the location of the peaks in the experimental rate spectra. In
most cases, the relaxation time scales obtained from exponential
curve fits match the peaks in the rate spectra, although the rate
spectra approach is more robust and less sensitive to noise
(Supporting Information Figure S11, see Supporting Informa-
tion section A.4).
We additionally note the presence of a very small peak at ∼3

ms in the rate spectrum of the simulated time course, near the
slowest implied time scale of the MSM. The existence of this
separate peak is likely an artifact due to the broad spread of
relaxation time scales (∼0.1−3 ms) and should be attributed to
the folding transition. Inspection of the transition matrix
eigenvectors corresponding to each implied time scale show
similar structural events for all of these relaxation modes:
ensembles of compact unfolded conformations transitioning to
the native state (Supporting Information Figure S12).

■ DISCUSSION
We believe that complex, multistate kinetics is a general
phenomenon in biopolymer folding studies and find it plausible
that a great deal of complexity in protein folding is commonly
masked in a macroscopic interpretation of ensemble and even
single-molecule experiments.62 It is very noteworthy that
several new single-molecule studies of protein folding have
found conformational fluctuations indicating multiple distinct
metastable states.63,64 Even the most sophisticated single-

molecule experiments, however, cannot resolve the entire
microscopic complexity of folding due to the limited number of
photons that can be detected on the microsecond time scale. It
is therefore likely that ensemble and single-molecule fast kinetic
observables cannot capture the full complexity of folding, and
instead we must turn to computer simulation. We expect
Markov state model approaches to be increasingly useful in this
regard, as direct comparisons to experiment can made by
projecting predicted microscopic dynamics onto macroscopic
observables.
Our combined experimental results and MSM of the ACBP

folding reaction suggest that residual unfolded-state structure
forms on the ∼100 μs time scale, in the absence of a well-
defined intermediate. This time scale agrees well with the rates
previously reported by Teilum et al. using Trp-Dansyl FRET
and a continuous flow mixer,7 and thus we believe the same
molecular process is observed in the two studies. Even in that
study, the putative intermediate was described as being mostly
unstructured, with only a ∼30% increase in buried of surface
area compared to the unfolded state and with the fast ∼80 μs
kinetic phase insensitive to denaturant concentration.
Intriguingly, our results suggest that the slow formation of

unfolded-state structure is not due to barrier-limited formation
of a folding intermediate but rather due to slow unfolded-state
structuring, possibly through a continuum of states. We find
strong agreement between the mean-FRET efficiency of the
denatured subpopulation at equilibrium and the asymptotic
mean-FRET efficiency of the slow, kinetically resolvable phase
in the nonequilibrium mixing experiment. In our mixing
experiments (from 6 to 0 M GuHCl), the measured FRET
reaches ∼90% of the native-state FRET over the course of
∼200 μs. This implies that any intermediate I must have
nativelike FRET (as characterized previously7), and that the
unfolded U state must have low FRET and be highly populated
at high denaturant concentrations. But if the time-resolved
FRET we observe is indeed due to the relatively slow (∼100
μs) interconversion of discrete low-FRET and high-FRET
states, we would likely see significant line-broadening of the
denatured subpopulation in our smFRET experiments. Such
line broadening has been shown by Rieger et al.47 using
smFRET with ALEX and a similar confocal transit time to
detect an unfolded intermediate of RNase H at ∼0.7 FRET,
differentiated from the native state (0.8−1.0 FRET). A
signature of such an intermediate is a very broad unfolded-
state FRET histogram that results from subpopulation
averaging and shot noise. In contrast, our unfolded-state
FRET histograms are narrow, comparable with Protein L,
which does not populate a folding intermediate. Although we
cannot rule out the possibility that U and I substates are
obscured by shot noise or fast averaging, and note that we can
only make relative comparisons of single-molecule and time-
resolved FRET, we believe the weight of the evidence argues
against the barrier-limited formation of an intermediate.
Instead, we believe that the changes in FRET over time

observed in the mixer must correspond very closely to the
unfolded-state compaction seen in decreasing concentrations of
denaturant by smFRET. Early events in the folding reaction are
predicted by the MSM to be structurally heterogeneous,
suggesting collapselike behavior with a gradual acquisition of
nonlocal residual structure. Nonspecific hydrophobic collapse
has been characterized as occurring on the ∼100 ns time
scale,65 so slow collapse in ACBP is surprising, although other
studies have characterized nonspecific collapse forming on time

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja302528z | J. Am. Chem. Soc. 2012, 134, 12565−1257712575



scales less than 150 μs.66−68 Consistent with this picture is slow
dynamics in protein unfolded states characterized here and
elsewhere,49 as well as slow dynamics predicted by the MSM.
We note that Bayesian estimates of average Arrhenius folding
barriers separating MSM metastable states38 are small, ∼1.64 ±
1.04 kcal/mol for the 20k-microstate model (Supporting
Information Figure S13), but the overall hublike connectivity
structure of the network can contribute to slow kinetics.
It is interesting to compare our predictions of unfolded

structure with the results of a recent simulation study by Shaw
et al. of the acid-denatured unfolded state of ACBP, in which a
single 200 μs trajectory was simulated.47 We utilized tens of
thousands of independent trajectories amounting to tens of
milliseconds of aggregate simulation time. Not surprisingly,
even though both simulations predict long-range structure
between helices 2 and 4, we see a great deal more heterogeneity
in long-range contacts, reflecting both native and non-native
interactions between residues normally participating in the
hydrophobic core of ACBP. The relaxation time scales we
observe for individual helices is consistent with the faster
folding/unfolding time scales of helix 1 observed by Shaw et al.

■ CONCLUSION

In this work, we have constructed an MSM model of ACBP
folding that reveals a complex network of metastable states with
slow dynamics in the unfolded ensemble due to nonrandom
residual structure and heterogeneous folding pathways.
Validation of this model using smFRET, intramolecular
diffusion, and fast microfluidic mixing experiments suggests
that the folding reaction for ACBP involves a surprisingly slow
acquisition of unfolded-state structure in helix 2, 3, and 4 on the
∼100 μs time scale, followed by barrier-limited folding to the
native state on the ∼10 ms time scale.
Moreover, our combined simulation and experimental

studies of ACBP show how the microscopic complexity of
folding can be reconciled with the simple macroscopic behavior
often seen in bulk experiments. Despite its inherent micro-
scopic complexity, our MSM model of ACBP predicts that
experimental observables probing intramolecular distance
should exhibit simple biexponential kinetics. In many other
molecular systems, e.g., vesicle fusion, polymer dynamics, small
molecule conformers, etc., complex dynamics may also underlie
simpler experimental observations. MSM approaches like those
described here may provide a general framework for taming
these processes and explaining how their simple macroscopic
behavior arises.
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Chodera, J. D.; Smith, J. C. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
4822.
(63) Pirchi, M.; Ziv, G.; Riven, I.; Cohen, S. S.; Zohar, N.; Barak, Y.;
Haran, G. Nat. Commun. 2011, 2, 493.
(64) Stigler, J.; Ziegler, F.; Gieseke, A.; Gebhardt, C. M.; Rief, M.
Science 2011, 334, 512.
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